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AERONAUTICAL _YMBOLS.

1. FUNDAMENTAL AND DERIVEI) UNITS.

S.vmbal.

Metric.

Unit. t Symbol.

Length...l l met_r _ ................ I m.

Time ..... [ ; ] ,eeond ...................... ] see.
Force .... ] F 'i weiaht of one kilogram ...... I kg.

i i

Power. ] I' I
. _! kg. m/sec ..........................

Speed.. _ _ m/,,_ec ...................... I In. p. s.
"'I ........... [ ' l

English.

Unit.

L

foot (or mile5 ........... !

se,',md (or hour) .... i_ei_ht of one pound: _.

I

horsepower .............. I
mi/hr ................... I

i Symbol

ft. (or mi.).
see. (or hr ).
lb.

Weight, II'= mr1.

Standard aceehq'a;hm of gr_vity,

g - 9.S06m/_e¢. _= 32. [72 f_/'._ec."
]V

Mass, m =--
ff

Density (ma.s pr re,it, w)[ume), o

_tandard densit.v _,!' ,l: T _u_, 0_[247 (kg.-m.-
see.) at. 15.6°C. aud 750 tntm 0.00237 (lb.-

ft.-see.)

2+ GENERAL SYMBOl.S, ETC.

Specific w¢.i_ht c,f "standard" air, 1.223 kg/m. _
0.07(_35 lb, [t2

Moment ,f iqertia, _M:z (indicate axis of the

radius of gyrqtion, k, by proper subscript.).

Arch, N: u i_g area, Sw, etc.

Gap, _i

Span, b: ch'._rd length, c.

Asp(,ct ra! i,_ =-b/c

])islance fr,,m c. g. h_ elevator hinge, f.

(?_,e/[icim_t _i" viscosity, _.

3. AERODYNAMICAL NYMHOI,N.

True airspeed, V
t

llvnamie (or imp.wt) pr__,<_ure, q = :_ pV"

L
l,ift, L; absolute ,w " t; ('-

ca_ ,_eter) 'L-- qS'
D

.... " qN.I)rag, D; ab_-ohh_, c:_efflcie, nt (¥ =

Cross-wind force, C: a'_:atut.,* c_n4ticient
C

Resultant force, R

(Note that these co_fflicien_,:_ are twice as

large as the o[,! eoe[tieients Lo, I)_),

Angle of setting of wings (relative tt) thrust

line), /_

Angle of stabihzer set_mg with reference to
thrust line i_

Dihedral re@e,
W

Reyn,d,ls Number =p_-, where 1 is a linear dt-
nlellSioH.

e. g., for ", mod(,l airfoil 3 in. chord, 100 mi/hr.,

normal p_'es_ure, O°C: 255,000 and at 15.6°C,

2b'.0,0(}0:
or f<,r a _,>det ()f 10 em. chord, 40 m/_ee.,

e_;rre.p(mding numbers are 299,000 and

270,000.

Center (ff pressvre coefficient (ratio of distance

,f C. P. frmn leading edge to chord length),

6;.
Angle of :tabilizer setting with reference to

lower wing. (/t--i,.) =¢t

Angle _f aitaek,

Angle of downwash,

I
! i
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MATHEMATICAL EQUATIONS FOR HEAT CONDUCTION IN THE FINS

OF AIR-COOLED ENGINES.

By D. R. HARPER 3d, and W. B. BaowN.

SUMMARY.

At the request and with the support of the Engineering Division of the Air Service, United

States Army, McCook Field, the Bureau of Standards undertook some laboratory investiga-

tions dealing with air-cooled aviation engines, the results of which were submitted to the

Committee on Power Plants for Aircraft and by that committee recommended for publication

as a technical report of the National Advisory Committee for Aeronautics. In connection

with laboratory measurements o_f t_ heat-dissipating power of typical engine cylinders, a

mathematical analysis of fin behavior was made and is given in this communication.
The introduction contains a description of the paper which will assist the general reader

who is not interested in mathematical detail in finding those parts of the paper most likely
to prove useful to him. A recapitulation of the mathematical developments is given in

Section IV and forms the statement of conclusions reached in so far as a mathematical paper
of this type may be said to have conclusions. Numerical examples illustrative of these con-

clusions are then given, followed by a very brief suggestion of possible application of the

equations.

The problem considered is that of reducing actual geometrical area of fin-cooling surface,

which is, of course, not uniform in temperature, to equivalent "cooling" area at one definite

temperature, namely, that prevailing on the cylinder wall at the point of attachment of the

fin. This makes it possible to treat all the cooling surface as if it were part of the cylinder
wall and 100 per cent effective.

The quantities involved in the equations are the geometrical dimensions of the fin, thermal

conductivity of the material composing it, and the coefficient of surface heat dissipation between

the fin and the air stream. Several assumptions of physical nature are thus necessarily involved

in making the problem possible of solution. These are set forth in detail, and the limitations

which result from them in applying the equations to numerical calculations are carefully
pointed out.

An expression for approximate fin effectiveness is developed, based upon simple mathe-

matics and very convenient in form for engineering use. The essence crf the paper is an

examination into the magnitude of the errors involved in using this expression without cor-
rection and a determination of the corrections needed for accurate work. The mathematical

expressions involved are quite complicated, including Fourier's Series, super Fourier's Series,

Bessel functions of zero order of two kinds with imaginary arguments, etc. The results of

the work are collected in graphical form in a series of charts, so that the design engineer can
use the simple formula first developed and apply to it corrections readily read from the

charts, thus avoiding entirely all higher mathematics.

L INTRODUCTION.

The equations which express the flow of heat in a metal in terms of simple physical proper-

ties are perfectly definite and adapted to numerical computations, although usually somewhat

cumbersome and tedious. In applying these equations to the fins on the outside of the cylin-
ders of air-cooled internal-combustion engines, the chief obstacle to numerical work is the

great uncertainty of the value to be assigned to one important physical quantity, the rate of

dissipation of heat from the fin surface into air under the conditions surrounding the fin. This
3
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important deficiency seems to have discouraged any widespread use of the equations of heat

conduction in considering the I)roblem, since deductions made from them could be trusted

only within rather wide limits.

With the increasing knowledge of rate of cooling in an air stream, it has become more
worth while to compile the information obtainable from a mathematical analysis of the prob-

lem. The details of such an analysis are not of sufficient general interest to warrant the average

reader in following them closely, but it is believed desirable to render them available for refer-

ence by those who are working in the same field. The equations which have to do with this

subject are bulky, the algebra and integrations tedious and time consuming, and the chances

for error are high, alttlough no especially intricate or abstruse reasoning is involved, nor is there
much difficulty in interpreting final results other than the necessity of a careful examination of
the relative numerical size of the various terms.

With a full appreciation of the tax imposed on a reader by reason of the foregoing facts,

the authors have prepared this paper in a form which endeavors to meet the following speci-
fication:

(a) To segregate, for the benefit of all who are i:_iterested in the general subject of air-

cooled engines, a general skeleton of the analysis, including the discussion of conditions which

bear upon the problem, statement of the exact assumptions to which are applied the mathe-
matical development and the conclusions resulting therefrom, with a few examples of numerical

computations to illustrate the practical application of the mathematics.

(b) To interline with the above, in such form that the general reader may skip it without

losing the thread of the development, such details of mathematical transformation as will be
needed by the specialist to reproduce the equations or use them to advantage in their applica-

tion to his particular problem.

(c) To omit all details of algebra, integration, arithmetic, etc., which are merely the

mechanism of the mathematical development. Although these steps are essential to an

acceptance of the validity of any of the deductions, it must be left to the critical reader to supply
the gaps, because the paper is sufficiently complicated in meeting specification (b) without

such additional weighting.

The basic principle of design which characterizes an air-cooled engine is the providing

of some means to increase greatly the natural surface by additional cooling surface, the purpose
being to keep the engine cylinder wall temperature down to a value below the upper limit

set by satisfactory engine performance. This additional surface takes the form of cooling

fins, usually made an integral part of the cylinder barrel and arranged either longitudinally

along the barrel or circumferentially around it. The problem considered is that of reducing

actual geometrical area of cooling surface, which is, of course, nonuniform in temperature, to

equivalent "cooling" area at a definite, easily specified temperature. This may be done by

finding an expression for the effectiveness of fin surface, i. e., the ratio of the amount of heat

dissipated by unit area of fin surface to that dissipated by an equal area of cylinder wall surface

with the same tempearture as that at the fin base. This will make it possible to treat all the
cooling surface as if it were on the cylinder wall and had 100 per cent effectiveness.

II. APPROXIMATE FORMULA FOR EFFECTIVENESS OF COOLING FINS,

Two cases occur in practice: (1) Circumferential fins, usually of tapering thickness, with a

base temperature that may change from point to point; (2) longitudinal fins with similar con-

ditions of thickness and temperature. A direct analytical investigation of each case in all its

generality is quite difficult and has not yet been completely worked out. In this paper an

indirect attack on the general problem is made by a method of successive approximations.

The effectiveness is first computed for a simple case, where several simplifying assumptions
are made. Then the limitations of these assumptions are removed, one or two at a time, and

the necessary correction made to the first result. The effectiveness f is, therefore, expressed
in the form

¢=f'+A,f+52f+ • .
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GENERAL ASSUMPTIONS.

Four general assumptions ef physical nature are made that apply to every case considered
here :

(1) Quantity of heat transferred per unit time from the metal surface to the air is pro-
portional to the temperature difference between the metal and the air.

(2) The coefficient q, heat transferred in unit time from a unit surface per unit temperature
difference, is constant over the fin surface.

(3) The fin is symmetrical about a plane through its middle and approximately parallel
to its faces.

(4) The temperature at a given point is independent of the time.

Assumption (1) is known as Newton's Law of Cooling. It has been found to be sensibly

true for very high velocity air-stream cooling in such cases as are under consideration.'

Some preliminary measurements of heat dissipation by air-cooled engine cylinders made in

the laboratories of the Bureau of Standards also indicate the validity of the assumption within

limits necessary to work of this kind.

Assumption (3) is obviously true mechanically except for minor inequalities of manufacture,

which on an average over a cylinder would be inappreciable. Physically, there is marked

lack of symmetry about such a plane if the fin be oblique to the air stream, but this lack of

symmetry has to do with assumption (2).

Assumption (4) provides a working basis that is entirely acceptable. Questions of engine

design must be settled from considerations of cooling capacity under full load and continuous

operation, when a steady temperature distribution exists. A cooling system which will meet

this demand will obviously meet the less stringent cooling requirements involved in starting

up and approaching temperature equilibrium. The rapid variations in temperature of the
inside wall of the cylinder between explosion and intake are quite damped out in their effects

o_ fin temperature. The validity of the assumption has been demonstrated by experimental
evidence.'

Assumption (2) involves, amongst other things, either independence of the heat transferred

from a fin to an air stream and the velocity of the air stream, or else the assumption of constant

velocity of the air stream over all portions of the fin. The first hypothesis is untenable; the

second one is discussed below. Experimental data are very incomplete. The assumption is

recognized as weak, but in the present state of knowledge it is about all that can be done. It

is known to be justifiable in long tubes and is probably not far wrong for longitudinal fins _4th

fairly open spacing. One set of measurements _ on a plain cylinder without fins, a small cylin-
drical rod (diameter 2 cm., _ inch) indicated that with the air stream normal to the axis of the

cylinder, the variation in air velocity, front and rear, was of the order of 30 per cent, namely,
a difference of 15 per cent each way from the mean value. British measurements on air velocity

between fins indicate a change in q from tip to root of longitudinal fins of less than 15 per cent.

These meager data would suggest that if an average value over a fin were taken, the deviations
from it would not generally be more than 10 or 15 per cent. The error after integration in such

cases is generally less than the original error, so that the result with this approximation is

probably in the neighborhood of the true value.

SIMPLIFYING ASSUMPTIONS.

In addition, the following simplifying assumptions give a simple problem which serves as

a basis for more complete analysis:

(1) The temperature across the fin thickness is sensibly constant.
(2) The fin is so long that the effect of the exposed ends (of longitudinal fins) is neglible.

I A. H. Gibson. Automotive Industries, May 13, 1920, p. 1109. Theories and Practices in the Air Cooling of Engines,

* Judge, "High-Spee4 Internal Combustion Engines," pp. 107-109.

s T. E. Stanton, Great Britain Advisory Committee for Aeronautics, Report 94f 1912-13, p. 47.
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(3) The heat loss from the exposed edge can be accounted for by imagining the width
extended by a distance equal to one-half the fin thickness at the outer edge and assuming no
heat loss from the end.

(4) The base temperature is constant.
(5) The fin thickness is constant.

(6) The fin is longitudinal.
The details of assumption (3) are illustrated in Figure 1.

The edge abc at a temperature O, dissipates some heat AH, If ab and bc be swung around
to ab' and cb' and the space filled in with metal, the temperature drop from a to b' will be small
and these surfaces will dissipate practically the same amount of heat as before. The other
simplifying assumptions require no explanation.

It will be shown later that all of the _ f's are small compared with f', so that the cross
products which represent the effects due to the joint action of several disturbing influences
may be neglected and only first-order effects due to single causes need be worked out.

OUTLINE OF THE GENERAL PLAN OF MATHEI_IATICAL ANALYSIS.

First, f' is computed on the basis of all six simplifying assumptions stated above.
Second, f is computed with assumptions (1) and (3) removed. Thus f-f' gives hi f+

5,f+hl,8 fl These are shown to be negligible for all conditions prevailing in engine work.
Third,f is computed with assumption (4) removed, giving 5_f, which is zero.
Fourth, f is computed with assumption (5) removed and replaced by the one that the

sides are straight, and hence the thickness t is a linear function of the distance z from the fin tip.
This gives 55f, which is often not negligible. If X is the ratio of the thickness at the tip to the
average thickness, then A_fmay be expressed in terms off' and _. Its value is computed for
several values of k and the results shown graphically on a chart.

Fifth, f is computed with assumption (6) removed and a longitudinal fin replaced by a
circumferential one. This determines h_f. If p is the ratio of the inner radius to the outer,
fmay be expressed in terms off' and p only, so that the results for 56f are expressed graphically
in the same way as above.

By means of these charts, f can be found with a sufficient degree of approximation for the
most general case.

(1) Computation of ft. (The approximate function to represent heat flow in terms of
geometrical and thermal properties of the fin.)

Let q = coefficient of heat transfer from surface.
w = true width of fin.
t = fin thickness.

x = distance from the cylinder wall.
f= fin effectiveness.

]c= fin conductivity.
0 = temperature of fin above the air.

80ffitemperature of cylinder wall above the air.
H= heat dissipated by the fin per unit time.

H0 = heat dissipated by equal area of wall surface per unit time.
t

w'= corrected fin width ffiw+ 2"
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By introducing the simplifying assumptions (3) and (4), the boundary conditions are:

dO
= 0 when z = w'

0--0, when z--0 (1)

The fundamental equation of heat transfer 4 under the conditions corresponding to assump-
tions (1), (2), and (5) is

d'0 2_S
= -_- (2)

The solution of this equation in the form most convenient for this work is

0 = A cosh a (x - B) (3)

where A and B are arbitrary constants of integration and a is an abbreviation for _/2q]kt_
When A and B are determined to satisfy the boundary conditions, stated mathematically

in (1)
cosh a (_-w')

0 = 0o cosh aw'

The rate of heat dissipation from a unit length of fin is computed by an integration with
respect to x from 0 to w'.

tt = 2f['_ Odz=_ f:'cosh a (z-w') dz (4)

The heat dissipation from an equal area (2w') of cylinder wall at temperature 0Qis

and therefore
H, = 2qeow'

f'= = w' cosh aW'Jo cosh a (z - w') dx ffitanhaw_--aw' (5)

This function (tanh aw')/aw', for which the single letter f' will be used, is the function

which will serve as the basis of discussion for much of the following work. Under average con-
ditions of practice it will be found sufficiently exact to serve as the basis for all computations.
In those cases where it does not fit with sufficient accuracy, it will be found convenient to use
it as a principal term plus necessary correcting terms. The principal properties of the function
therefore merit attention.

When aw' is increased, the value of tanh aw' increases likewise, but rather slowly, and
although reaching 0.9 when aw'ffi 1.50, it does not increase beyond 1.0, no matter how large
aw' becomes. The ratio f', therefore, starts at unity and gradually decreases to zero, when

plotted against values of aw'. This plot is shown in Figure 3, where the single letter u is sub-
stituted for aw'.

u = aw' _w'.2___ (6)
y kt

6 The method of deriving this equation is explained iuliy in elemtntalT textboolks on hvat. The difference in quantity of heat conducted into

an elemental slab at coordinate z and that conducted out aS z-bdz Is, in the equilibrium stette, the amount that escapes into the air through the

erdrface dz. TIa_ equality, when common factors are canceled, il the equation (2).
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Figure 3 shows that f grows less as u increases, whence as w' or q increase, or as k or t
decrease. That is to say, the effectiveness of a fin decreases as-

(l) The fin width is made greater.
(2) The fin is made thinner.
(3) The fin is made of material with a poorer thermal conductivity.
(4) The coefficient of heat dissipation to the air increases.
This last statement indicates that fin effectiveness is relatively less at higher air speeds,

since the value of q increases with air speed.

/OO

,_ 60

zo

I I I I I L I I I,I
--t..L /s an obbrevio/tbm rof-aw - w'/_

I w',,fThwid/h-./- Yz f,hthickne, ss. •

I q = Coeff/cienfof_ur'foce
tTeof di.._Jpof/on.I I t - rh;ckn¢_s offi_.

I I ! I t I

0 .4 .# L2 /.6 2.0 2.4 28
V_/ue.._ of 1..Z

Fig. 3.--Curve showing function Tan, h u. Any unit_ whatever if they
t_

belong to a mutually consistent system will do to measure the above
four quantities and wiU lead to the same number for U.

III. CORRECTION TERMS TO APPROXIMATE FORMULA.

In the use of the formula (5) derived in the preceding section, it is very necessary to know
the departure from exactness which has been introduced by use of the simplifying assumptions
which are obvious deviations, at least to a small degree, from the conditions which actually
prevail. This investigation of the order of magnitude of the several correction terms involves
considerable tedious mathematic_s which are incorporated in the paper only to meet the needs

of a specialist in the field. The general reader will find the conclusions summarized at the end
of the chapter.

(|) CORRECTIONS FOR HRAT DISSIPATION FROM I_DGE OF FIN AND FOR "CROSS-FLOW" IN FIN.

This correction is determined by solving the problem as stated initially without the aid of
simplifying assumptions (1) and (3) but with the aid of the remaining simplifications. The
difference between the solution so obtained and the function defined in equation (5) above
shows the value of the correction which would be necessary to the ]atlt£,r rio take account of the
two factors of this title.

=o_,-_e --. F/9.4

The problem is a straightforward development of two-dimensional heat flow s, in which the
boundary conditions are stated mathematically as follows:

With the origin of coordinates located as indicated in Figure 4, the axis y = 0 is the median
line of the fin, and from considerations of symmetry there can be no heat flow across the median
plane, a condition expressed mathematically by zero temperature gradient.

6Byerly-Fouriers Series and Spherical Harmonics, art. 59, p. 102, edition of 1902.
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_0
Along y = 0 _ = 0 (7)

Along y = t/2 k _0 m
-qe

(this face being one which is dissipating heat to the air).

(8)

Along x = w k _9•_ = - qO (9)

Along z = 0 0 = Oo (10)

(this edge of the fin being the one integral with the cylinder wall and maintained at given con-
stant temperature 00). The fundamental equation of heat transfer for this problem is

bx--i+ _)ya= 0 (111

which, being of the second order in two variables, can include in its primitive four arbitrary
constants and permit of applying the four conditions (7) to (10) for the determination of such

constants to give a complete solution of the problem as stated.

The convenient form for the primitive is

cO

0=ZmAm cosh a (x-B) cos ay (12)
1

which contains three arbitrary constants A, B, a and satisfies the condition (7). The develop-
ment of condition (8) leads to determination of a as any solution of

at at qt
_- tan 2-= 2-k (13)

Then the value of B is defined in terms of a by the use of condition (9) leading to

a tanh a (B - w) -- q (14)

Lastly, values of Am must be selected to conform to condition (10) in terms of the a and B

already specified. These values of A must satisfy

(3O

0o= :_mAm cosh aB cos ay (15)
1

The possibility of determining values of Am to satisfy this relation has been established by

workers in the field of Fouriers Series and other harmonic expansions, e and while the particular

form here applied may not identify exactly with those commonly found in the textbooks, it

seems quite unnecessary to supply here any of the intervening transformations. It is adequate

evidence of the validity of the assumption that definite values for Am may be found if we pro-
ceed to find some which define a convergent series.

The principal reductions will have to do with equation (13) and the algebra is simplified
considerably by the use of a parameter _ in place of a, defined by the relation

_t
4,=_ - (16)

s Bysr|y-Fouriers Series and Spherical Harmonics, pp. 118-121.

3341--23--2
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It may be noted that equation (13) is one with an infinite number of real values of a or

satisfying it, whereas equation (14) has but one value of B for any given value of a, the hyper-

bolic tangent being a single valued function. To dispose of this equation and replace it by a

series, the quantity B is replaced by a new parameter _, defined by

t
B=w+_+E (17)

In terms of E and 4, the revised equations (13) and (14) take the form

qt
¢ tan ¢ =2-_ (18)

qt _ qt 1/ qt \, lf
4_(1+ _)= tanh-' 2k_- 2-_ ÷ 3k2_) + 5k.2k-_] 4...

_=-t+k{_qt_2[- 1 1/qt \" 1/ qt \"

With a 4_m determined as a root of equation (18) and the corresponding *m determined from

the series (19), we must select an Am to give the expansion (15) which in the new parameters is

co t+ ,,,)cos 2____y0o= _mAm cosh _-(w + 2 (20)

and then substitute all these in (12) revised to

0=_ml Am cosh Tkx-w-_-Em)

2_bm

COS -_-y (21 )

The details pertaining to the process just outlined are tedious and of interest only to the
worker who desires to check the development. Multiply each side of (20) by cos (2¢_ky/t) dy,

where _b_ is any root of equation (18) and integrate for y from 0 to t/2.

t'tt2 2_bk.
oo cosh 20m t "_/ t f 2____tm- 2_bkdy= Z.mAm _-\ w +-_ + ,._. .t/2 cos y cos _-y dy (22)0 0o cos -_-y 1 /d0

ot/2 2*m 2Ok 7 t[-*m sin _m COS *k--*k sin *k cos *m-]

and therefore vanishes for those values of _m and 6k which are roots of equation (18) except

for the particular choice _k=q_m, where the indeterminate form of the expression introduces

the possibility of finite value. It follows, therefore, that the summation on the right-hand

side of equation (22) can consist of no more than the single term given by the equality of m

and k, whence

fO t/2 2*m 2,m( "_ ft/2 2'.O0cos-[-ydg=A,_cosh t w + 2 +*m/do c°sZ t y dy

From which

=Amc°sh[-2_m(w+t+e')l×t[1 sin24h"-I+ 2-_m J

t sech -- w + 2 + _m]Jo Oocos _-- y dy (23)

---
l+---

2Om

The above value of A,. is in a form for a general expansion of 00 as any arbitrary func-

tion of y, namely, for any specified temperature along the thickness edge of the fin (i. c., along

the cylinder wall). This generality is too complicated for consideration in this paper, which
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has been limited to the case of 00 being constant. This condition may therefore be intro-
duced at this point into equation (23), which reduces to

24_m (w + t/2 + _) sin _
Am = 400 sech --7- 2_m + Sin2_7- (24)

This value of Am used in equation (21), with the aid of equations (18) and (19), completes
the solution of the problem as a problem in thermal conduction.

For application to the purposes of this paper, it is desired to compute the effectiveness of

the fin surface, which has been defined above as the ratio of the heat dissipated by the fin to
the heat which would be dissipated in the same time by an equal area of surface all maintained

at the constant, uniform temperature 00, which is here the temperature of one edge of the
fin. Designate this ratio as H/Ho, and retain the previous notation with q for coefficient of

surface heat dissipation, remembering that 0 is measured on a temperature scale with its zero
chosen at the temperature of the air stream cooling the fin.

Ho=q (2w+t) 0o H--qfods

H ..... 1 __

To _tegrate over the dissipating surface, we-have dS =dx along the two fin surfaces for

unit length of fin and dS = dy along the edge opposite the cylinder wall.

rOdS= 2 f :Oy_t/2 dx + 2f:' Ox=w dy

f= f: Oy-t/2dx + f;' Ox-w dy

From equation (21)

0Y-t/2 = ZmAme°shl T _kX--W--_--tm] COS (_m

0x-w = _ra Am cosh 2.._ +em cos -- y
1

and by substituting these values in equation (25) and reducing the result,

, o s,o,0. "° .o,,-,-• _ix _m
W_- 2

+ t _. 2 sin' 4'm coshT(2
+ _m

W-_-_- ]m _)m (2(bin+sin2¢bm)

In the use of equation (26) the terms of the summation are given by using for Om in succes-
sion all the real roots of equation (18)

_ _t
tan 4,-2_ (18)

q=heat dissipated from fin to air stream per unit time per unit area of fin surface per
unit temperature difference.

t =-fin thickness.

k = thermal conductivity of fin material.
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From each successive value of (_m, the corresponding {_mis computed from equation (19):

qt 2 t qt
_m= 2 q

It is obvious that equation (26) is much too cumbersome for everyday application. From

the standpoint of pure mathematics it is the equation to choose in preference to equation (5),

being based upon more acceptable assumptions and including as a special case the conditions

leading to the solution expressed by equation (5). From the mathematical viewpoint, correct

procedure would be to solve the problem in the more general form, obtaining equation (26)
for effectiveness of a fin, arid then to examine the relative magnitude of the terms involved

and leave out the small ones in order as successively less exact approximations are desired.

In this way one might approach a comparatively simple formula, either equation (5) or an

equivalent, for all usual applications. In this paper an alternative presentation' has been

adopted in deference to the algebraic complexity of the processes in the more general case,
and it has been deemed wise to develop first the comparatively simple solution which is good

enough to apply to most air-co,)lcd engine cylinder work, showing how good or how bad is

the approximation by a later development of the more exact relations.
These more exact relations are too complicated for convenience. The course outlined

above can be put in practice, not by a general consideration of the magnitude of each term in the

series, but only by specilic numerical computation of these terms for one or more typical sets
of conditions.

The units selected for q, k, and t are immaterial so long as they are consistent. The factor

qt/k, which enters the computation, is dimensionless and independent of the unit system. If it
be desired to measure t in inches and q in Btu. per minute per square inch per degree Fahren-

heit, then it is only necessary to express k, the thermal conductivity, in Btu. per minute per

square inch per unit temperature gradient in degrees Fahrenheit per linear inch. The inter-
national units are used below. Assume:

k = 0.10 calories per second per cm? per unit gradient in °C. per cm.).

q = 0.008 (calories per second per cm. 2 per °C.).
t=0.5 cm.

w = 3.0 cm.

This set of values is for a steel fin (k = 0.10) of excessive proportionate thickness (one-sixth

of the width) and large absolute dimensions, and in a very high speed wind stream. (q= 0.008

probably corresponds to a wind velocity of 90 meters per second, 200 miles per hour.) These

conditions are the ones which should exaggerate the effects of "cross flow" and dissipation

from the thin edge of the fin, the two factors included in the more complicated solution and

omitted in the simpler. By "cross flow" is meant taking into account the two-dimensional

flow of heat in a plane section of the ]in rather than treating it as linear flow from the engine

cylinder wall toward the outer edge of the fin, sensibly parallel to the flat fin surfaces and with

but a negligible component perpendicular to these surfaces or across the fin. The case selected

is therefore unfavorable to the approximate equation and should indicate the largest corrections

to it necessary in any ordinary application.

qt 0.008x0.5
2k=-- 0.20 =0.020 (27)

The values of Cm are given by the roots of___

1 1
¢ tan ¢ = _ or tan 4)= 5-0_ (28)

which is conveniently solved by graphical means by plotting values of tan ¢ and of 1/50¢ and

reading the value of ¢ at the intersections, namely, where the two functions equal each other

(fig. 5). The value of 1/50¢ are so small for all values of _ greater than that corresponding to

the first few roots that the function may be taken as coincident with the axis and cutting the
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tangent curves at roT. The first root may be read from the graph of figure 5 plotted to a scale

sufficiently open or may be approximated analytically by the series expansion,

. ¢3_ 22s ,
tan 2=_+_-_ t. • • if 2< _ 0.02=22+2' . 22'

(neglecting high powers of 2 because it is noted that 2 is much smaller than unity),

0.1414=2 1 -_-_ + 15J

I-_,, ]-TJ...... / i J -_ ' , , , _
t-,T-_ .... _ ..... -,_-i _-_i _ _ : : i

_ KII--17 ....... r-,-1, t I _ i _ i
"_-i!?.7Y7- _1_' I i I J i i,

d

| I i _' ! i i
/o ill i , ---_ ........ '-ii-i- i-

' _ ! i I

- !....... a7--V:

I I,!_4_4.L_......'_......
I i i i

I |1:-! I I ",--.'P =_

C:", _--÷( .--L-. .....

0 I 2 3 4

FI(}. 5. Graphic solution of tan x = 1
50x

To solve this it is evident that 2 is so closely 0.1414 that the latter may be substituted for

22 and 24 without appreciable error in comparison with unity.

0.1414 = 2 [1 + 0.00667 + 0.00005]

=211,1.0.00336]

2 = 0.1414 X [1 - 0.00336] = 0.1409

To find the second root, 2_, the relation tan (_+ a) = tan a is the key to the process, bearing

in mind that 22 is so very close to r as to admit of some approximations which are very exact

while at the same time very simple. Omitting details

22 = _r4- 0.00635

The departure of 23 from 2,r and of 2, from 3_r, etc., is quite inappreciable, whence the values

of 2 for equation (26) are:

21=0.1409 23--3.148 2_=6.28 2,--9.42, etc.

The next step in computation is evaluation of _= from equation (19).

qi= 0.020 ]¢ 0.100 12.50
q 0.008

_t 0.020 qt _ 0.020 __2-_t= 0.00322_,=_-.i_-9 =0'1419 2]c2_ 3.148 0.0063

_+2=12.50 (0.1419)' 1-_-_ (.1419)'+g (0.1419p+ .... 0.25356

F 1 3

12.50(0.0063),L1.1. (o.ooa3),+..._l _ 0_00049

--] (0.0032)'+. • .]=0.00013,,,1.  2.5o(0.0032)2F1-
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In substituting the values just obtained into the terms of equation (26) it is worth while to

tabulate the intermediate steps for the first term (m= 1) in order to illustrate the order of mag-

nitude of the different factors and to form a guide for estimation of the changes to be expected

in using somewhat different values for k or q or t from those selected for this example.

01=0.1409
t

_i+ _= 0.25356 w+2 +_1= 3.2536

201=0"2818 -2_-1(t + _') = 0"1429t

t
sin 201 = 0.2780 sinh_l (_ + _1) = 0.1434

201 t
sin '01= 0.0197 cosh--t-(_+,_)= 1.0102

20-1 (w+ 2 + _t)=t 1.834

t + _,) = 0.950tanh 2-t¢--1(w + _

201 t
cosh _-(w+_+ (1)= 3.21

o2 ,o[ o1, 1 o lOlO,,f .... t 0.1409 (0.5598) 0.950 _ +0.1409 (0.5598) 3.21
w+_

[- • 20_ t

t _ sin20m 1. .20m

+ .... +,m)-cosh mh--rG+- +,. I

20,. t
t co 2sin ) Cm cosh-i- _,_+.m)

+ ---_-zm-,--

w+ 2, "-(20m+sin20m)cosh2__0t__(w+2+t,, )

(29)

f= 0.1538{3.524 [0.950 - 0.0447] + 0.4995 × 0.315} + Z, etc.

=0.1538{3.189+0.1572} +Z, etc.

sin (2r+0.0127) tanh 12.59 (3.0005)
=0.5148+0.1538 3.148 (6.30+0.013)

sinh 12.59 (0.00049)']. 2 sin _ (r+0.00635) cosh 12.59 (0.00049)/a_ Z
- cosh 12.-5_9 (.3.0i)(i_ J ± 3.148 X 6.31 c_-h ]_._ (3-3_0-0_J- m-a' etc. (30)

Reduction of the terms in the above expression (30) indicates by inspection the general
trend of each term in the later series. Cosh 12.59 × 3 is enormous and the two cosh terms in

the denominators above and in all succeeding terms are so extremely large with respect to any-

thing occurring in the numerators that the terms containing them are inappreciable. Also,

the tanh function of a large argument is unity, whence there is left, to evaluate, only

sin (2_r+ 0.0127) and _m sin 20_
3.148 (6.30+0.013) t Om (2_-m_q--s_ 20m)

where 0m for m= 3 and greater is so near a multiple of r that sin 20_ will be inappreciable.
The numerical term above is

0.0127
- 0.00064

3.15×6.31
and

f= 0.5148 + 0.1538 × 0.0006 = 0.5149 (31
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This value of f should now be contrasted with the approximate valuer' given by the simple

cxt)ression, equation (5) :

tanh aw'
f'= aw' a = _ _t r

q = O.OO8
k=0.10

t = 0.50

w = 3.00

w' = 3.25

= =0.565
a = V0.050

aw _= 1.836

tanh aw' = 0.950

, 0.950
f = 1.83_ =0.5176

t
wt=w+ 2

(32)

The difference between f' and the more exact value of the effectiveness which is given by

f in equation (31) is therefore not quite 3 parts in 500, or less than 0.6 per cent.

It thus appears that the error introduced by neglecting the transverse temperature gradient

and assuming the edge correction to be simply t/2 added to w is less than 1 per cent in this exag-

gerated instance. In ordinary cases it is negligible entirely, for an aluminum fin, q---0.003

(air speed 70 or 80 mi./hr.), k = 0.50, w' = 2.0 cm, t = 0.15 cm, f=f', within less than 0.1 per cent.

(2) CORRECTIONSFOR VARYINGBASETEMPERATUREAND EXPOSEDENDS.

In this proof the edge correction that has been proved to be sufficient, i. e., w÷t/2 for w

and l+t/2+t/2 for the length, will be assumed and the transverse temperature gradient

neglected. Hence, the problem becomes that illustrated in Figure 6.

f_

f_

I "X X-f_6

The plate of width w is replaced by the fictitious one of width w' with the origin at the

outer or free edge, so that the plane x = w' becomes the engine cylinder wall maintained at a

given temperature 00, assumed constant as to time but not uniform with relation to the coor-

dinate z. By neglecting the transverse (y direction) temperature gradient, the fundamental

equation for the problem takes the form

520 _0 2a
0 (33)

which must satisfy boundary conditions at the four edges as follows:

when

_0 0
z=0 _)z=

_0
z=l'=l+t bzffi0

D0
x=0 _xffi0

x = w' 0 = Oo= F(z)
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where F(z) is a prescribed function, given for any particular problem. The boundary con-
ditions for the two fiat surfaces of the fin, which are cooled by the air stream, have been incor-

porated into equation (33) in the process of deducing it from fundamental considerations.
A convenient form of solution of equation (33) for this application is

0 = ZA cosh ax cos 0z

where a and 0 are connected by the relation

(34)

a2 -2 2q- t_ = kt (35)

because in the form selected for (34) the boundary conditions for x = 0 and z = 0 are automatically
satisfied for all values of A and a, leaving these two parameters to be determined by the remain-
ing two conditions. The requirement at z = l' is satisfied if

m_

/3=_- (36)

where ra is any integer whatever. The solution is complete in the form

O= _m Am cosh ( 42q-f_ m_r_ \ m_'zo _ + -/vi- x) cos l' (37)

provided values of Am are determinable, so that when x = w' the function (37) identifies with
the given F(z). This is a common Fouriers Series development and requires for Am the value

Am _. 2 t ¢11' mrs3_

l' cosh + w'
(38)

It is not worth while for purposes of this paper to assume any of the more probable forms for
F(z) and complete the solution of such special cases. It happens that the general conclusion
which is desired, namely, the difference between the approximate value of fin effectiveness which
is given by equation (5) and the more exact value given by equation (38), is capable of being
found in terms of a general form for F(z) unreduced to special cases.

To compute the effectiveness of the fin,proceed according to the definition to find expressions
for the heat actually dissipated and that which would be dissipated if each portion of the fin were
at the temperature of its contiguous cylinder wall. The latter quantity of heat is:

and the actual dissipation is

Ho = 2w'qfo t'F(z) dz (39)

_w' pl'

H=2qJ ° dzJo Odz (40)

From the ratio of these, the effectiveness f is

pw' pl'

| | Odx dz
_=ffi _ _ _] dO ,a Ho- ----_-----

W'Jo F(z) dz

(41)

When the value of 0 defined by equation (37) is substituted in (41), it contains the expre_sioa
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which is zero except for the value m= 0, and, accordingly, the working expression for equation
(41) is much simplified. The zero term of a cosine Fourier expansion is half the formula for the
general term; that is to say, equation (38) reduces to

and

Ao

2 1'

1 - 2a , _ F(z) dz
2 l' cosh _W Jo

,
(42)

The substitution in equation (42) of the expanded form of Ao reduces the result to the form

which expression is identical with the value given by equation (5), derived on the hypothesis
that the fin base did not vary in temperature along its length. In other words, the nature of the

variation of temperature along the base of the fin, including a uniform distribution as a special
case, is immaterial, in so far as the function to express fin effectiveness is concerned.

($) WEDGE-SHAPED FINS.

The complete solution for a wedge-shaped fin involves rather complicated mathematics, the
terms involved being Bessel functions with imaginary arguments. The practical form of appli-
cation of the solution, expressed in manageable form for numerical work, is to plot a curve or
series of curves giving the correction to be applied to a simple expression for the effectiveness of
the nearest equivalent parallel-sided fin. A digest of the mathematical treatment follows.

$ou_o

Let the fin be wedge-shaped, as shown in Figure 7, with straight sides, the thickness tapering
from a value tz at the fin base to a value tI at the fin tip. The fin width may be considered ex-
tended in amount tt/2 to account for the heat dissipation actually occurring from the surface
at the end (tl) and the fictitious end is then treated as if blanketed completely. The origin of
coordinates is most conveniently located at the fictitious end and the problem is thus stated in

terms of surface dissipation along the two sloping surfaces of Figure 7, a blanket at x = 0; namely,
dO/dz=O in that plane and 0=0o at x--w+fi/2. The fin is to be considered so long (direction
perpendicular to plane of the paper) that the end dissipation is immaterial.

For derivation of the fundamental equation, consider the heat flow per unit time in a
section dz at the point z, the corresponding fin thickness (t) being defined in terms of the angular
parameter a shown in Figure 7.

t=t,+2 (z-_)tana. (44)

2 tan a.
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The heat flow, per unit time per unit length of fin, at the plane x is

b_e
bz

(where k is thermal conductivity of the fin, 0 the temperature at point x and x and t as defined

in fig. 7) so that the difference between the heat flow into an elementary slice at plane z and

out at plane z + dz is

b(ktbO ) b'O. .bObtb_z _ dx, namely, kt b-_['ax + k b-x b-x

By means of equation (44) this expression becomes

b20 bO
let _-_ dz + 2 tan a • k _ dx (45)

In the equilibrium condition, this quantity of heat equals the heat dissipated by the two

elements of fin surface, namely,
dx

2qO

(q= heat dissipation per unit area per unit time per unit temperature difference, fin surface to

surrounding air; 8 = temperature of fin at point x, as above, tlhe scale of temperature used being

such as to have zero for the temperature of the air)

k t_+ 2x- tana _+2ktanabx-cosa

This equation is not one for which a solution may be recognized readily, the term causing
trouble being the x in the coefficient of the second derivative. By a change of independent

variable, involving considerable algebra, the equation reappears in a well-known form, similar

to Fourier's equation, Bessel's equation of zero order. The clue to the necessary change of

variable is furnished by examining equation (46) in the standard form with unity for the initial
coefficient,

d_O 2 tan a dO 2qO
dz _ _ tl(1- tan a) +2z tan a _=/¢cos-_[t, (1 -tan a) +2x tan a] (47)

d8
and trying substitutions that will simplify the coetiicient of dx" (It may be noted at this point

that since in equation (46) 8 has been expressed as a function of only one variable, x, it is un-

necessary to distinguish further between partial and total derivatives.) The change of variable
is defined by

, -_2F . t, (1- tan a)l

where

q
b_= k sin a

and the equation resulting from the transformation of (47) is

+ 1 = o (49)d_ 2 p

which would be Fourier's equation were the terms all positive. Upon substituting (ip) for _,

the equation goes into this form, whence the solution of (49), as given, is

8 = AJo (i_,) + B Ko (i_) (50)

where A and B are arbitrary constants and Jo and Ko are Bessel's functions of the two kinds,

order zero. Before discussing briefly any properties of such functions relevant to this applica-

tion, it is well to examine the more finished form taken by the equation when A and B are

determined to satisfy the terminal conditions mentioned above,

dO
_/z= 0 when x=O and 8--8° when x =w' (51)
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These do not correspond to simple algebraic expressions when expressed in the variable _.

dO _ d8

d_ - 2b2 dx

so that for all finite values of _ the derivative dS/d_ vanishes whenever dS/dx vanishes, whence

-d0=0 when _=_1=2b_ t_ (1-tan ai
d_ __ 2 t:an

2b_/[,_+tl (1- tan a) (52)0=80 when
2 tan a

In order to aoply these conditions to the determination of A and B in equation (50), it is

necessary to make use of the properties of Bessel functions which have been discovered by
mathematicians working in the field. Even a brief review of such properties is far beyond the
scope of this paper3

The Bessel function of the second kind, designated above as the K function, is, for a com-

plex variable, generally replaced by a slightly different form of function than that for which

the symbol K is common in mathematical literature. The common use of K makes it the
function related to J, so that

x 2 x' /++1)+ x* 1 1Ko (x) log Jo (x)+_-_2._t_\l

Accordingly, with an imaginary argument (ix), a complex relation would result,

22 _ 1+ - •

and it is convenient to take the term in log i over on the left-hand side of the above equation

and define a new function which it will be noted is a real function in z. It is beyond the scope
of this paper to consider in any detail the properties of such functions and the reasons for select-

ing particular forms as the elements in which to express solutions. Unfortunately, there is

considerable difficulty in comprehending the literature on the subject because great confusion

occurs in the notation employed by different writers. The original extensive treatment of
complex Bessel functions is due to Hankel s and the symbol H is common for such functions

but with exasperating lack of unanimity in regard to tile exact definitions of such functions,
which in the hands of various writers differ by several additive constants or constant multi-

pliers. For the purposes of this paper, the H function employed will be that tabulated by
dahnke and Erode, _ defined by the following series:

2 :r_2 . 1\ x _ / 1 1 x_ j_wherelog2iHo (ix)= 2lJ o (ix)log 7x ÷2_:i-(1" 2J(2.T))2-t-_ 1 _-2-i-3)(2.4.6) '_- ...... 0.11593
7

which it will be noted is a real function of x, since Jo (ix) is always real.

Rewriting equation (50) in terms of this particular form for a second solution,

O= AJo(i_) + BiHo(i_) (53)
from which

dO
du - AiJ, (i_) + BH_(i_)

T Among standard texts on Bessel fffnctions may be cited: N. Nielsen; Handbueh der Theorie der Cylinderfunktioven-Teubner, 1904; Gray
and Matthews, Treatise on Bessel Functio1_, MacMillan, 1895; W. ]E. Byerly, ]:ourier's Series and Spherical Harmonics, Chap. _,'II, Glnn, 1902;
Jahnke and Erode, Funktioutafein, Section XIII, Teubner, lgO'2.

a Hankel, Mathematische Annalen l, p. 4_3, 1_9; 8, p. 453, 1875.

' Jahnke and Erode, Fuaktlonentafeln, p. 134 of 1909 edition.
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by virtue of the properties of Bessel functions that d Jo (x)/dx = - J_ (x) or d Ho (z)/dx = - H_ (x).
In order that equations (52) may be satisfied,

iAJl(iul)
B= Hl(iu.,) (54)

and A must fulfill the condition 0 = 00 when u = u_.

HI (iuO Jo (i_) - J_ (ipl) Ho (iu)
0 = 0o_ 2_j, (i_,) H0 (iu;) (55)

For the particular purpose of this section, it is not necessary to tabulate numerical values
of equation (55) and map the temperature distribution ill the fin. The object sought here is
an expression for fin effectiveness, defined as in the preceding sections. The heat which would
be dissipated by the fin shown in Figure 7 to air at temperature zero if the fin surface were all
at temperature 00would be (per unit length of fin per unit time)

W t

2q _ Oo

while that actually dissipated is

2q cos a

from which it follows that fin effectiveness f is

. 1 Cw'O
J= ¢o Jo (56)

From equation (48)

f= 262w'.] ,,,eo _d_ (57)

There are two ways of integrating (57), which are in principal identical, and of course
lead to the same result. One is to substitute for O/Oothe value given by equation (55) and
integrate the resulting expression by using as a reduction formula

d [xJ_(x)] = xJo(x), and likewise for H,
dx

and the other results from noting the identity

dO dO
dd_uU _i-u)= u d=O

From equation (49)
d30. dO

(.
dO

Also, from (52), _ vanishes for p = u. whence

whence
dO

= 1 ___ =: iu_ J,(iu,)H,(ip,)-J_(iu,)H_(ip_)
f [_ u, d#__ 2b'w' H,(iu,)Jo(iu2)-J,(ip,)Ho(iu_) (58)

In computing numerical values with equation (58), the values of p_ and P2 may be obtained

from equations (52) in terms of w', t_, and a, the geometrical constants of the fin. Where the
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fin extends to a sharp-edge intersection of its two sloping surfaces, tl=O and therefore _1--0

and _2=2b_wV=2_/qw'/k sin a. The function H_ is infinite for zero value of the argument,

whence for /_1=0 it is necessary to consider (58) in the form given below to avoid an inde-
terminate _o/_.

iJ,(O) - v]i(_2) iJ_(i_2)

iHo(itt_) = 2-_-w' Jo(i_,) (59)
f = 2b_w' Jo(i_2) + iJ_(o)- Hx(O)

This special case, a fin extending to a sharp edge, could, of course, be solved very much

more simply than by making it a special case of the more general problem. Recurring to

equations (49) and (50), if the condition of solution to be met is dO/d_=O when _=0, familiarity
with Bessel functions shows at once that an abbreviated form of equation (50), namely

0 = AJo(ig)

will meet the condition stated and at the same time have one arbitrary constant left so that the

boundary condition at x= w may be fulfilled. This method of procedure confirms very easily
the result reached in equation (59).

For the interpretation of equation (59), substitute for _ its value 2b_/w 7, bearing in mind

that for all engine cylinder fins the taper is so small that sin a= a = tan a within the accuracy

1
which is required by engineering practice. The value of a is then approximately _ t2/w, and

if we denote by t_ the mean thickness of the fin which tapers uniformly from t2 at one edge

to zero at the other, then a= t,_/w. (In this case, w' and w are identical.) The reduced expres-
sion for equation (59) is

and expresses the effectiveness of a wedge-shaped fin in terms of its physical and geometrical
characteristics.

Following the general plan of this paper, the next step is to ascertain the difference between

f, computed by the exact formula (60) and a value f' which would result from employing the
very simple expression (5); in other words, assuming that a wedge-shaped fin of moderate

taper functions nearly enough like a parallel-sided one to permit of using the formula developed
for parallel sides and then making a correction for the error introduced by this procedure.

Rewritingf in terms of a,

tanh aw' /-_
f, .... a-U_-- where a= _/ k-t (5)

- (ia ,4 
f= aw Jo (iaw_/2_ . (61)

in which it is seen thatf is an explicit function of the product aw just as isf', so that the two

functions may be compared at any desired point. The difference is about 6 per cent for aw = 1 ;

about 16 per cent for aw = 2; and 25 per cent for aw=3. The fin dimensions commonly em-
ployed are such that aw probably never exceeds 2 and is pretty generally less than 1. A com-

parison of the two functions is plotted as Figure 8.

It is reasonable to suppose that in all cases a trapezoid section fin would differ less in be-

havior from that of the corresponding rectangular section fin than would a triangular section fin

of equivalent mean thickness and width, so that in using the simple expression f' for computing
effectiveness of wedge-shaped l_ns, the maximum error occurring would be that corresponding
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to the difference between the two curves of Figure 8. It is therefore possible to use the simple

formula and apply a correction with a fairly accurate degree of approximation, estimating the
correction from the relative approach to a rectangle or a triangle of the fin section under con-

sideration. A more exact but less convenient procedure is to compile a table or set of curves

giving the exact correction under various circumstances. Such a set of curves forms Figure 9.
The derivation is as follows:

The taper of a fin may be expressed in terms of the fin width and the ratio of its thickness

at the tip ft, fig. 7) to its mean thickness tin.
Let

X= t,
t= (62)

2' TM'- IM'* _l !---- ktra

•q - Coeff/ci¢_/ofsur&ce heel d/rs/,z>ahon.

-- ,=k _. t'_/efn'/oIconduCfl'vl/y of f/rl'l --T--
trrt =Meon thtdrness of fln:L---b--

/.0 _ _ _ I t,- ZT-t/ckne=rs of fth of ou_r edg_
-- to =W/dfh of f_h.

.8

%.6
%
0

l -¥'E ,4O'a_V2")

:,

0 .4 .8 l_ /.6 2.0 2.4 _.8
Volue$ of Q_ '

FIG. 8. Comparison of the two hmctions which expre._s effective-

ness of a triangular section and of a rectan_fl_ section t_n. ]
the functional for Bessel's function of the primary type. i is the

complex symbol _/--_. J0' with an imaginary argument is a real

function, and Jl is a pure imaginary, so that i Jr is a real

function.

Then a of Figure 7 may be expressed in terms of w, t=, and X _ud with no approximation

other than sin a = tan a, substitution in the expressions (52) which define #x and _2 lead to

aw/ /t_- - aw /2 (63)

whore a has the value used in all the previous developments, namely, _/2q-/X'tm. Since t=/w is

always small with respect to unity,

aw /-[-. tm -X)] (64).,=i y^L,-2;('
and the term in brackets can usually be omitted. There is a 1 to 1 correspondence between

values of aw and approximate values of fin effectiveness, so that for any desired fin effectiveness
a suitable value of aw may be read from the curve of Figure 3, and by means of the relations

(63), (64),/_ and/_2 may be tabulated as functions of k for any effectiveness. Values of _ and

#= so obtained are then substituted in equation (58) and a comparison between the resulting f

and the approximate effectlvenessf' will give the corrections, as a function of the taper ratio X,

which must be applied to the approximate functionf'. Such c_rves are plotted '° in Figure 9.

_* The complementary procedure is to take stated values of k and for a series of such values determine the correction as a fu.nction of approximate

effectiveness. This procedure has been adopted for Figure 10, where it is only necessary to show the curves X=0, X =0.5 and X=0.75 to permit of

=tt_eiently accurate interpolation, by inspection, of any other curve of the family for the purpose of obtaining the correction to [' for any taper at

any effectiveness.
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4. CIRCUMFERENTIALFINS.

For a circumferential fin of considerable width on the average size engine cylinder, it is not

to be expected that relations developed for a long, rectangular fin will hold without appreciable
correction. It will be shown here that the magnitude of the correction is well within the limits

which justify the procedure of employing the approximate formula, corrected when necessary,

in preference to using an exact solution of this problem with its attendant complications. The

difference in the physical behavior of a given area of circumferential fin and of rectangular
plate is perhaps most easily pictured by focusing attention on the mean circumference. When

the fin width is not small with respect to the radius of curvature of this mean, there is going to
be a considerable difference between the fin area, for a given length of this median, which is

within the mean circumference from that area outside it, whereas in a rectangular plate, the
median bisects the area. With such a difference in area distribution, it is clear that the tem-

perature of the median is not going to be by any means equal to that which is found at the

median of the rectangular plate. The use of the rectangular plate formulas is therefore more

in the nature of analogy than of approximation, but it is nevertheless convenient.

'°F--F--T- I

1 .
04 F-=_-'_.--_L_J_, - - _ _: _->_-_ i_....

o L ZJso! !
a I I I/f:o _ I I i

k 0 .I0 .20 .30 .40 ,50 ,60 ./0 .tJo .YO I00
kJ --_ # lh,chnes$ of ed,.___l

rope,- ,-ot, o ^ - | -A_ -fhilJ'_S ]

FIG. 9.--Wedge-shaped fins. Corrections to approximate effectiveness
, Tanh aw'

I - _,

.......o4 f-_

-
001 Z = LO0

,,o
A/_o_-oxlmaf¢ effecfivents$ ,f

Fig. 10--Wedge-shapcd fins. Corrections to I',

,-,,,,

A further picture which may assist in visualizing the physical processes involved comes from

comparing the way in which a circumferential fin differs from a corresponding straight one to

the way in which a tapering fin differs from its analogue of uniform thickness. In the latter

case, we have practically identical surfaces with differences in the metallic conducting area
from root to tip of fin. Since the metal near the tip is less useful, removing a certain fraction
there and adding it correspondingly at the root where it is most needed results in a fin somewhat

more effective than the same average thickness fin with llo taper. If, now, we take a straight
fin of mlift,rm thickness and bend it around an arc, we do nothing to alter the metallic conduc-

tion process, but do change the disposition of surface. We get a less proportion of the surface

in near the engine cylinder, where the temperature head is greater, and a correspondingly

greater fraction out at the rim, where it is less useful. Accordingly, the curved fin is slightly
less effective than its straight analogue• The possibility of certain similarities in the mathe-

matical treatment of the two corrections, taper and curvature, thus presents itself• As a matter

of fact, it turns out that the mathematical functions involved are practically identical, although
leading to corrections in opposite directions, as the above picture indicates. The taper cor-
rection which has just been developed in detail and found to be always a positive correction to

f' is paralleled by one for curvature, always negative.
The notation for the circumferential fins is as follows:

Re = inner radius (namely, the outer radius of the engine cylinder).
Rf = outer radius (extreme fin radius).

t = fin thickness, assumed uniform.

w = Rt - Ro (fin width).

r, 0, coordinates (polar) of any element of the fin.
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The other symbols employed retain the same significance as in previous sections. The

heat dissipated from the edge of the fin is to be taken into account by the method developed in
section (2) of tiffs paper, adding t/2 to the fin width. The exact correction, to give a surface iden-

tically half that of the edge, would be

_t(1 t2 " /

but the sum of the terms following 1 is usually less than 1 per cent, and t/2 is in itself only a

small correction term, so that the omission of these terms causes no appreciable error.

The fundamental equation of heat transfer in a metal, expressed in plane polar coordinates,
combined with the condition for surface dissipation from both sides of each element of fin

surface, is
020 . 1 dO a2 2 2q
b--_+r _r = 0 a =kt (65)

(0, temperature at any point; q, coefficient surface heat dissipation; k, thermal conductivity;

t, thickness, assumed uniform). The boundary conditions are

i)0 t
-_r=0 when r=R'r=Rf+_ (66)

0= 0o when r = Re

Equation (65) is similar to (49), in fact identical with it if u/a be substituted for r, whence

the form of solution is given by equation (50) or equation (53), and since the boundary condi-
tions (66) are identically those of equations (52) with appropriate values of ar instead of ut

and #_, it is unnecessary to discuss any details of solution of equation (65). The result may

be taken by inspection from equation (55),

H_ (/aR'r) Jo (iar)- J_ (iaR'O He (Jar)
O= OoH, (iaR'r) Jo (iaRe)- J, (iaR'O He (iaR°) (67)

Following the usual procedure (or expressing the effectiveness of the fin surface, divide

the heat dissipated by the fin, namely,

2q fRO. 2rr.dr
JR,

by that which would be dissipated by an equal area of cylinder wall at temperature 00, namely,

2q. r (Rr' 2_ Re2) 0o (68)

2(n"rO dr
JR,

f = Oo (Rf'2 - Re2)

and upon reducing this expression to an integrated form, emph)ying a process identical with
that used for reducing equation (57), there results as the expression for effectivemess of a cir-

cumferential fin,

2Re i Jt (iaR¢) H_ (iaR'O-i Jt (iaR'_) H t (JAR,)
f=a (R'r2-Ro 2) Jo (iaRo) H, (iaRf')-J_ (JAR() He (iaRo) (69)

It is convenient to have the result stated in terms of the fin width and ratio of the inner

and outer fin radii.

Let
Re

o = Rt' (70)

w' = Rr' - Re
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From these definitions, it follows that

w' pW

Rf'=l_ p Ro=__p

P H HI

_ f aw' _ (7,)

Equation (71) may be used to give f as a function of aw' for any specified value of p, or to

givefas a function of p for a specified value of aw', as may be desired. Thus, two processes are

open to choice for the tabulations or charts to give the corrections to apply to the approximate
value of fin effectiveness, defined, as previously, to be the function f'= tanh aw'/awtto take

account of the circumferential-shaped fin.

plotted by both processes.

i

,P-/OI I _
_ " .S.P .60 .70 ,80 .90 _00
=_. Curvofure = Ik_er fin md/¢_|
- roffop lOu_r _'_,.o=÷]

Hlfhlckne_ --

Fig. ll.--Clrcumferontia| fins. Correctiolls
_o approximate effectiveness f'.

In Figures 11 and 12 will be found sets of curves

_-06 -

-IOI I A [
_'.30 .40 .50 .60 .70 .80 .90 /.00

Aptx-oxJmof_ efr_-fAfene._$ .f'

Fig. 12,--Circumferential flus. Corrections to f'.

IV. RECAPITULATION OF MATHEMATICAL DERIVATIONS--CONCLUSIONS.

Making four general assumptions of physical nature which are stated and fully discussed

in the early paragraphs of Section II of this paper, it is found that the fundamental mathematics
of heat coi_duction lead to the expression

f, tanhaW'wherew,=w+2anda__=- aw_-- _"
w = width of fin.

= thickness of fin.

q= coefficient of surface heat dissipation, units of heat per unit time per unit surface per

unit difference in temperature between the fin surface and the air stream into which the heat

is dissipated.

k= thermal conductivity of the fin material, units of heat per unit time per unit cross-

sectional area per unit temperature gradient•
f'=fin effectiveness; the ratio of the heat dissipated by the fin to that which would be

dissipated in the same time by an equal surface all at a temperature identical with that of the

base of the fin; i. e., the temperature of the engine cylinder wall along the line of attachment of
the fin.

The above expression for fin effectivene_ would be rigorously exact under the following

assumptions:
(1) The temperature across the fin thickness is constant; i. e., flow of heat is linear from

base toward tip, with inappreciable "cross flow" in the direction of smallest dimension of the fin.

(2) The fin is so long with respect to other two dimensions that the heat dissipation from

the exposed ends is an inappreciable fraction of the total.
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(3) Conditions at the exposed edge are such that the heat 10ss therefrom can be accounted

for by adding to the real fin width one-half of the fin thickness to get a fictitious width for use

in the equations and treating the exposed edge as though perfectly blanketed.

(4) The temperature distribution prevailing at the base of the fin is that of uniform, con-

stant temperature.
(5) The fin thickness is uniform.

(6) The fin is of rectangular contour.

By removing restrictions expressed in assumptions (1) and (3) and setting up the equations

to express exactly the thermal behavior of a fin which obeys the remaining four conditions, a

solution may be obtained which imlicates the colu'ection necessary to apply to the function ]'

quoted above to take account of the error introduced by making assumptions (1) and (3).
Were this exact solution somewhat more manageable, it is obvious that proper procedure

would be to employ it directly in computations rather than as a tool to construct corrections to

an inexact formula. However, it is found to be extremely complicated and unsuited to repeated

use. Fortunately, it proves that for any combination of geometrical and physical properties

likely to characterize an engine cylinder fin, the correction will be within 1 per cent, and for the

usual present-day designs it is only 0.1 or 0.2 per cent. It is therefore entirely negligible in

comparison with other errors inherent in applying the mathematics to practical problems.
In view of the foregoing, it is quite justifiable for all practical applications of these mathe-

matical developments to neglect entirely the slight discrepancy between the hypothetical con-

ditions outlined in assumptions (1) and (3) and the real conditions which do occur. It is

entirely satisfactory to employ the formula based on the assumption as a formula representing

very exactly the actual fin performance. Assumption (2) is also obviously valid within satis-
factory limits for any numerical work with radial fins (always long). For circumferential fins

any error due to the assumption merges into that discussed in connection with assumption (6).

The limitation expressed by assumption (4) also vanishes without requiring any modifica-

tion of the function f'. Provided that we can predicate the conditions outlined in the first

three assumptions and assume the rectangular contour imposed by (5) and (6), it is a compara-

tively simple mathematical problem to derive the expression for fin effectiveness when the

temperature distribution along the fin base is described by any arbitrary function of the coor-

dinate parallel to the fin length. The result is tanh aw'/aw', or, in other words, the function

already quoted is equally applicable for uniform and nommiform base temperatures.

The assumptions numbered (5) and (6) are fulfilled by few, if any, of the fins occurring in

practice, and it is therefore of prime importance to ascertain how large a deviation from the

conditions described in these assumptions may occur before the use of a formula based upon

them becomes absurd. The exact solution for a tapered fin which is straight in its length

coordinate (i. e., a trapezoid section right prism) or for a uniformly thick circumferential fin is

not a problem offering serious mathematical difficulties, nor is the result of either solution a

prohibitively complicated expression for use in direct, numerical application. But. the functions

occurring (Bessel functions of both kinds with imaginary arguments) are distinctly unfamiliar

to others than specialists in mathematics, and tables of their values for numerical work are not

always conveniently accessible. It has seemed very desirable, therefore, to give in this paper
values of the differences between the exact solutions for these cases and the function

tanh aw'/aw t, so that the latter expression might always be used as the basis of a computa-

tion and corrections applied for its error.

For the trapezoid section prism fin the results are expressed in terms of the fin width (3)

and a taper ratio defined as the ratio of the thickness at the tip (t 1) to that at center (tin), a

uniform taper being assumed. Designating this ratio by ),, it is ),=tJtm. For a sharp-edge

fin X = 0, while the parallel surface fin has h = 1. The fin width w is corrected to w' by adding

tJ2, as in the cases discussed previously. The process of computing fin effectiveness is the
following: Compute the function tanh aw_/aw ', using (in "a") for the value of t, the mean fin

thickness Sin. Then, from this approximate value of effectiveness and the value of ),, interpolate
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on the family of curves forming Figure 9 or those forming Figure 10 and read off a quantity to

be added to the approximate effectiveness. This will give the fin effectiveness as if computed

from the exact Bessel function formula. The limitations to accuracy of the method are those

imposed by the curves of Figures 9 and 10, which have been computed to the highest accuracy

convenient for the tables of Bessel functions, etc., usually at hand. Generally speaking, this
was within 1 part in 1,000 for each individual interpolation made, and for the result when all

factors and terms are brought together it is quite certain that the corrected f' is reliable within

1 per cent, probably within a few tenths of 1 per cent.
For a circumferential fin, the process suggested is very similar to that just outlined for the

correction on account of taper. Results are expressed in terms of fin width w, which is the dif-
ference between tile outer and inner fin radii and a ratio p of the inner radius of curvature to the

outer. It is obvious that for very small values of p, namely, the configuration approaching a

circular plate with no hole (p = 0), it would be absurd to use a formula based upon a long, rec-
tangular fin and the "corrections" to such formula which have any real validity as corrections

are limited to the larger values of p. Between the values p = 1 and p = 0.5 the method is appli-
cable, but toward the lower value of p the corrections become large and likewise less certain.

After increasing uJ by half the fin thickness to w', compute tanh aw'/aw' and then in terms of

this value of approximate effectiveness and p, the curvature ratio, make use of Figure 11 or 12

to ascertain the correction to be added to the approximate value to obtain the true value of fin

effectiveness. It may be noted that this correction is always negative; i. e., a circumferential

tin is less effective than the value computed from tanh awt/aw '.

Summing up tile foregoing paragraphs with respect to the difference between conditions

which would meet assumptions (1) to (6) and the conditions which actually prevail, it is to be

noted that only the differences concerned in (5) and in (6) have appreciable effect upon com-

putations for the fins of internal-combustion engines. In case both assumptions are violated
at once, namely, a tapering fin of circumferential type, two corrections may be applied to the

approximate function, with a somewhat less degree of accuracy than pertains to either correc-

tion alone. The correction for taper was determined on the hypothesis of no circumferential

curvature and the correction for curvature on the hypothesis of uniform thickness, whence it is

clear that if both factors are concerned the corrections applied by this method are not exact

The deviation is a second-order error and is usually too small to be significant in industrial

applications of such a computation.

V. EXAMPLES OF COMPUTATIONS.

For the purpose of illustrating the ease of using the formulas whose derivation has been
discussed above, a few examples are appended. These are selected from two well-known

aviation engines--the Gnome, which has steel fins, and the Lawrance, with aluminum fins.

A long, straight fin of the same width and equivalent uniform thickness is used for an initial

example, followed by approximating to (a) the taper (b) the annular shape of the real engine

fin. For physical interpretation of the results of the computations, the definition of effective-

ness must be borne in mind. An effectiveness of 85 per cent means that each small area of fin,

say, 1 cm. _ or 1 sq. in., is equivalent in heat dissipating power to 0.85 as much area all at a

temperature identical with that of the engine cylinder wall in that vicinity.

The computations illustrate in a convincing manner the relative unimportance of high
thermal conductivity for/in metal. While the difference in effectiveness of the steel and alumi-

num fins is quite appreciable, nevertheless it may be noted that the effectiveness of steel fins,

very thin and yet reasonably wide, is high enough that for the conditions assumed in these

examples it is comparable to that of aluminum fins having five times the thermal conductivity
of the steel ones. Thus, no great incentive exists, on this score at least, to employ metals of

very high thermal conductivity.
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EXAMPLE 1.--Steel fin, long, rectangular, uniform thickness.

Width, 1.60 em.
Thickness, 0.08 cm.

Thermal conductivity of steel, assume 0.10 cgs. units.

Surface dissipation coefficient---assume q=0.003 cgs. units, corresponding probably to a
free-air speed in the vicinity of the engine of 40 to 50 meters per second, 90 to 110 miles per
hour.

i t
w -_w+_= 1.60+0.04--1.64

a= _t = _/(). 75 = 0. 8660. 10×0.08

aw t -- 1. 420

tanh aw'= O. 8896
f tanh aw'

= aw _ = 0. 626

The effectiveness of such a steel fin is thus about 63 per cent.

EXAMPLE 2.--Steel fin, long, rectangular, tapering.
Width 1.60 cm.

Thickness, 0.05 cm at tip and 0.11 cm at root.
Thermal conductivity of steel, assume 0.I0 cgs units.

q, assume 0.003, as in Example 1.

tl
w' = w + _ = 1.600 + 0.025 = 1.625 cm.

_] 0.10 = 0.08 = 0.868

aw' = 1.408

tanh aw' = 0.8870

tanh aw'
f= aw_ = 0.630

The taper factor _ = tl/tm is 0.05/0.08 = 0.625 and from Figure 10 the correction for a taper

factor 0.63 and approximate effectiveness 0.63 is 0.03c This correetion added to 0.630 gives
0.66_.

The effectiveness of such a steel fin is therefore 66 per cent.

It is perhaps worth while to illustrate the computation of effectiveness of a tapering fin

directly from the exact equation (58) which has furnished the basis of the corrections plotted

as Figure 10.
i J, (ip,) tI 1 (ipz)-iJ_ (i#.) II, (i_2)

f =2-q-W_ _2 H, (iu,) Jo (i_2) +iJ_ (iul) ilIo (i#:)

The half angle a (=tan a) of the wedge is 0.0187.
From this, by equations (52)

Jo

lliJ I
iJ,

11H 1

H,

_L= 2.90

#: = 4.34

(ip 2) = 15.17

= 3.613
(i_2) = - 13.30

(i_) = 0.00487

(iu,) = --0.0288

(iu2) = 0.00540

ka#_ = 0.831
2qw'

f=0.831 (-3.613) (-0.00540)-(-13.30) (-0.0288)

f= 0.665

n Jahnke and Erode, Funktion_atafeln, pp. 130-13_, 1909 edition.
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EXAMPLE 3.--Steel fin, circumferential, thickness uniform.

Width, 1.60 cm.

Thickness, 0.08 cm.

Inner radius, 5.65 cm.

Thermal conductivity of steel, 0.10 cgs. units.

q= 0.003 cgs. units.
From Example 1 the first approximation to effectiveness is 0.626. The outer fin radius,

7.25 cm. plus half the thickness, is 7.29, whence the circumferential curvature factor p = R,,/R'f is

5.65/7.29, or 0.775.

From Figure 12 the correction for a circumference factor of 0.78 and approximate effective-

hess 0.63 is -0.032. Adding this to 0.626 gives 0.594.

Tim effectiveness of this fin is therefore approximately 59 per cent.

To illustrate the computation of the above example directly from the exact solution for an

annular fin, equation (71), instead of through the medium of a correction curve based on this

equation, the following iigures are summarized:

iJl(iaw' iP_p) II, _ iaw'_._ iJ (iaw'_2p
f =aw' (1 +p) f

Jo\iaw'l--_] H, _ i__)q-.J, \l-p]

From example 1, aw'= 1.420

p = 0.775

1 -p = 0.225

aw'l°__p = 4.89

gw p
....... 6.32
1-p

iJ,(iaw'i2-p)----_ -22.00

iJ _iaw'
_\1 - p] = - 84 (estimated)

ilto (iaw'i P_)= O.O0265

H, = -
k i -- p/ 0.000605

II_ (iaw'l_p)=-O.O0291

2p 0.615
aw' (l+p)-

(-- 22.00) (-- 0.000605) -- ( -- 84) ( -- 0.00291) = 0.597
f= 0.615 (24_69) (- 0.000605) _(- s4) (0.00265)

NoTs.--The value 84 for iJ_ (i 6.32) can not be ascertained with any precision, but by using
an identical value in both numerator and denominator, the accuracy of computation is not

vitiated more than 1 or 2 parts in 500 by the probable error. The agreement of 0.594 with 0.597

is well within the limit to be expected in the use of Figure 12.
With a steel fin having the taper of Example 2 and the curvature of Example 3, with the

remaining characteristics the same as those taken for all three examples, the effectiveness would

be approximately 0.594 (Example 3) plus 0.034 for taper, or 0.63.
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(b) Computation of optimum dimensions of fins " to meet any specified relations which are

not mutually inconsistent. An example of this is minimum weight compatible with a given

cooling requirement, or head resistance, or combination of the two.

In applying the equations to compute optimum dimensions, it must be borne in mind that

too much must not be expected in the way of results. There are always a number of conditions

to be met which arc conflicting and for which a rigid mathematical specification of all would

render the problem unsolvable. Ill fin design these include maximum cooling power, minimum

weight, minimum head resistance to the air stream, adequate strength to withstand crushing

under rough handling, a choice of metal and geometrical form consistent with the possibility of
manufacturing with reasonable convenience and without prohibitive cost, etc. The engineer

has no grounds for expecting mathematics to furnish a single inviolable solution for the optimum

dimensions of the fin that will meet best such an array of specifications, but he does have the

right to expect mathematics to furnish him definite relations in which he can weigh the various

factors. Then, according t_ his judgment of relative importance of such factors, he can select

the design which he considers best. It is the purpose of this paper to supply definite relations

respecting the effectiveness of cooling for fins of ordinary type.
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Positive directions of axes and angles (forces and moments) are shown by arrows.

Axis.

Designation.

Longimd ina.l ....
Lateral ..........
Normal: ........ i Z

Force
(parallel
to axis)

symbol.

X
F
Z

Moment about axis.

Designa-
tion.

Absolute coefficients of moment

C,=_bL-z c=2t. Nqcs c_=_fs

mliin_...,.
pitching ...
yawing .....

Positive

_;_- direc-
tion.

L Y-----*Z
M Z-----_X
N X------*Y

Angle. Velocities.

Linear i
Designa- / Sym- (compo- I

tion. j bol nent along

__ / axis). __
roll ..... ) _ I u

pitch .... i 0 [ v

yaw..... !_[ _'

Angular.

P
q
Y

Angle of set of control surface (relative to

neutral position), _. (Indicate surface by

proper subscript.)

Diameter, D

Pitch (a) Aerodynamic pitch, p_

(b) Effective pitch, pe

(c) Mean geometric pitch, pg

(d) Virtual pitch, p_

(e) Standard pitch, p,

Pitch ratio, p/D

Inflow velocity, V'

Slipstream velocity, 1/'6

1 I=P = 76.04 kg. m/see. = 550 lb. ft/see.

1 kg. m/see. =0.01315 t-P

1 mi/hr. = 0.44704 m/see.

1 m/see.=2,23693 mi/hr.

4. PROPELLER SYMBOLS.

Thrust, T

Torque, Q

Power, P

(If "coefficients" are introduced all units

used must be consistent.)

Efficiency n = T V/P

Revolutions per see., n; per rain., N

(2)Effective helix angle • = tan-' ru

5. NUMERICAL RELATIONS.

1 lb. =0.45359 kg.

1 kg. = 2.20462 lb.

1 mi.= 1609.35 m.=5280 ft.

1 m. =3.28083 ft.




